The ARCHI

Fidelitas Amor et Artes

APRIL 1942
GRAND COUNCIL SPEAKS

Dwight P. Ely, W.G.A.:

Time and change are almost synonymous. Down the world’s highways they are traveling at breakneck speed!

In our Fraternity, time is changing our thinking and our ways. The brothers are saying more and more that Architecture is Building, it is a great part of our civilization, it involves a large proportion of our citizens. Alpha Rho Chi must grow to meet this rapidly broadening conception.

Just for instance, there are alumni of our brotherhood engaged in almost every conceivable vocation—not architects, maybe, but at least on the fringe of what might be strictly regarded as Architecture. Ask them if they are sorry they studied Architecture and they will tell you, one after another, it was the best preparation they could have had for real estate, or photography, or building and loan, or even fire insurance.

Even those whose work has little or no connection with real property say that the study of Architecture gives a cultural background comparable to the Liberal Arts. (A tip: Maybe the study of Architecture might be regarded as a cultural background course as well as professional—to the advantage of a large number of college students.)

At any rate, it behooves us to think hard on how we are to mold our operations to fit into a broader pattern of that segment of human life and usefulness which people universally refer to as “building.”

Our past is built on the foundation of “fidelity”; our present is reflected by the true arch of “fraternity”; our future is dependent on our “achievements.” . . . It seems as if I’ve heard that sequence of words before!

Robert E. McClain, W.G.S.:

“In times like the present we are apt to forget our associations of the past. While we all know what the primary purpose of the day is, we hope that through The Archi we can keep you posted on what your fraternity is doing, so keep in touch with us.”

Truman J. Strong, Grand Council Deputy:

In his matchless eulogy on General Washington in 1832, Daniel Webster closed with the words quoted below. Now, 110 years later, when we must defend our heritage against “enemies foreign and domestic,” we bring them respectfully to your attention.

“Other misfortunes may be borne, or their effects overcome. If disastrous war should sweep our commerce from the ocean, another generation may renew it; if it exhaust our treasury, future industry may replenish it; if it desolate and lay waste our fields, still, under a new cultivation, they will grow green again, and ripe for future harvests.

“It were but a trifle even if the walls of yonder Capitol were to crumble, if its lofty pillars should fall, and its gorgeous decorations be all covered by the dust of the valley. All these may be rebuilt.

“But who shall reconstruct the fabric of demolished government?

“Who shall rear again the well-proportioned columns of constitutional liberty?

“No, if these columns fall, they will be raised not again. Like the Coliseum and the Parthenon, they will be destined to a mournful and a melancholy immortality. Bitterer tears, however, will flow over them than were ever shed over the monuments of Roman or Grecian art; for they will be the monuments of a more glorious edifice than Greece or Rome ever saw, the edifice of constitutional American liberty.”
EVERYBODY knows Don Graf of Data Sheet fame, but how many really know him, and know him as an Archi? You probably thought that he was somebody else operating under a clever nom-de-pencil. No, the name is authentic, Donald Thornton Graf. He barely escaped being one of those stuffy nineteenth century architects; he was born May 22, 1900, in Cresco, Iowa.

After graduation from Minneapolis West High School in 1918, he entered the University of Minnesota, where two very important things happened; he became an Archi, and he began compiling the original Don Graf Data Sheet looseleaf notebook. Upon graduation with the degree B.S. in Architecture, he was awarded the Moorman Fellowship for travel in this country, which took him to Chicago, Buffalo, Boston, New York, Philadelphia and Washington, the American equivalent of the European Grand Tour.

His first job was in Minneapolis in the office of C. E. Van Kirk, now deceased. Later he was in the office of F. M. Mann, Minneapolis. During the Florida Boom in 1925 he was with Franklin P. Adams and Jefferson M. Hamilton in Tampa. Thence to Harvard where he acquired the M. Arch degree in 1926. He then worked in the office of Strickland, Blodgett & Law in Boston, with Reuben Damberg of Minnesota, followed by five years as head draftsman for Krokyn & Brown, Boston.

Although not launched as a publication until the Depression year of 1932, the Data Sheet idea was born, with the assistance of several Archis, about ten years earlier while Graf was on his first job with Van Kirk. At that time Graf used to have luncheon daily with Mel Larson, Ed Binger and half a dozen other Mnesicles brethren. It was at one of these luncheons that the Data Sheet idea originated. We all realize the soundness of the Data Sheet idea, based on the fact that the practice of architecture consists in the development of buildings on paper, that in the process of developing drawings, architectural men must make many calculations to determine sizes of materials and equipment and choices between similar products. In arriving at these decisions, we have to refer to a great variety of data, often hidden in textbooks, catalogues, etc., and usually surrounded by much irrelevant detail.

Don Graf's fellow draftsmen soon found his personal data book extremely useful because in it he had boiled down all wordy explanations to the most convenient form.

During the depression, while doing free lance writing and designing, Graf sent some of this notebook material to the editors of Pencil Points who immediately recognized its value and the first four Data Sheets appeared in the January, 1932 Pencil Points. Four Data Sheets have appeared in every issue since that time. It is estimated that 12,000 architectural men, architects, specification writers, designers, and draftsmen use 1,500,000 Data Sheets. Thirty-five thousand dollars worth of Data Sheets and binders have been sold. In addition to the general technical information provided by the published Data Sheets, many manufacturers utilize Data Sheets to present the essential information which the architect needs to have regarding their products. This has been a great boon to architects and engineers because as an architect, Graf knows better than the average advertising man what the architect wants to know about building materials and equipment.

As a result of the popularity of the Data Sheets appearing in Pencil Points, Graf became a member of... (Continued on page 41)
MODERNISM IN LANDSCAPE DESIGN*

By Lawrence A. Enersen
Department of Landscape Architecture
University of Michigan

In many heathen places it is said that an unsaved native is one who can outrun a missionary. The conflict between the traditionalist and modernist seems much the same. Many times I think the modernist a Don Quixote who is really fighting against no conflicting ideology, but is trying to proselyte the less-pugilistic-traditionalist and plant an ideology where none grew before; for the traditionalist has had no ideology more specific than vague ruminations on aesthetics—he possesses no burning convictions which compel him to action. It is as though a positive force that believes horizons will widen only as we push ahead to a beauty far more complete than any we have yet imagined is encountering a stable, neutral force that looks back for its perfection. Whether that positive force is well directed remains to be seen.

Briefly, let us consider the origin of the ideology and then attempt to answer the questions: What is Modernism? Where did it come from? How does it affect Landscape Design? and So What? (There are other names for modernism—contemporary, organic, Usonian, but the term "modernistic" is not synonymous—that is a superficial style based only on a desire to be different and employing many tricks to achieve that difference.)

Origin of the Ideology—It used to be a theory and is now a fact that "ontogeny is the recapitulation of Phylogeny," the development of the individual is a miniature rehearsal of the development of the race. The unborn child possesses temporarily the organs of an aquatic form, then amphibian, and finally the ultimate characteristics of man. So it is, I believe, with our learning processes. We might almost compare one year of life in the individual to a century of life in the race.

Starting the Christian period from the time of its general acceptance, and not the year one, there is a close comparison in the development of our religions thinking. The child is first polytheistic, believing in Santa Claus, Bogeyman, Fairies and witches, even the New Deal. Soon comes a very real and personal concept of God to be followed in his "nineteenth century," when science is too revealing, by doubt and even atheistic tendencies. By his senior year, the "twentieth century," science has lost its novelty and a reaffirmation usually takes place with modifications on a more workable basis. Likewise, development of the individual's aesthetic sense repeats history, there is a close parallel between a child's drawings in the first grade and all primitive art—it has a naive elementalness totally lacking in his later conscious efforts to achieve beauty. This is followed by the "dark elementalness" with not very much interest in "art" until the renaissance in the fifteenth year, or "fifteenth century," stirs up an inordinate love of the past and a belief that something old must be something good. By his "nineteenth century" the individual uses any and all styles without really understanding any of them. It is at this level of confusion that we find most traditionalists—readily accepting style as a convenient medium for what he considers artistic form. Aesthetically, it would be better if we had remained in the paleolithic period if we are not capable of going on to maturity with a return to reason, we hope, and a new love for the truth expressed by modernism.

For convenience in formulating a philosophy of the beautiful in the modern period I would then divide beauty into two kinds:

Abstract Beauty: painting, sculpture, music, possessing harmony, contrast, dominance, and rhythm, the still classic attributes of beauty.

Real Beauty: results from an approach to the qualities of abstract beauty through a perfect adaptation of form to function.

The airplane is still our best example of "real beauty" designed, not by designers, but by engineers who had to follow the laws of aerodynamics, for if it could not stay up in the air it was a failure by any standard and it mattered not how beautifully the ship was formed. The function of most design problems is not as clear cut as in the airplane—if it were, the problem would be easier and it would not be so necessary to supplement function with imagination.

According to this definition a South Dakota wheatfield is more beautiful than the Black Hills. You won't agree, but I submit that your reaction to mountain scenery is mostly a feeling of awe, the exhilaration of clear air and the thrill of looking up or down. The Norwegian fjords are about as fine scenery as one can find, yet if you spend more than a few days there they become as monotonous as flat country and you yearn for the architectural footprints of man or at least the degree of productivity exhibited by the Tyrolean mountains.

What is Modern Design? It is a beautiful expression of function and intellect. For instance, the circulation of a plan is an expression of function whereas the swing of a terrace line satisfies the desire for limitless— an intellective expression.

Where Did It Come From? I contend that the principles of modern design, being simply a return to reason, an obeisance of the laws of organics, a love for things indigenous, can be found exemplified in the works of man from earliest times to now—it is something timeless and we may see its logical expression in a Cotswold cottage, a Gothic cathedral or the summer palace.

* Illustrated lecture delivered before The Michigan Academy of Science, Section of Landscape Architecture, March 14, 1941.
at Peking. The Piazza San Marco is a fine example of space designed without reference to bilateral symmetry and classic shapes, but with reference to the changing viewpoint of a person walking through and being a part of this space. Furthermore, it is an example of the inter-penetration of two areas—something never allowed under the dictates of eclecticism.

The immediate forerunners of the present movement were Richardson, Sullivan, and Wright, whose influence was not felt here (since no man is a prophet in his own land), but in Europe whence it was returned to this country by Mies Van der Rohe, Gropius, Saarinen, and others.

How Did This Affect Landscape Design? First came bizarre attempts to be different for the sake of difference. The projects of Professor Haffner are clear examples of the desire for radical expressions on an old framework. The forms of Villa Hyere, likewise, seem not to be determined by any requirements of function. Different they are, but still illogical. The Century of Progress Exposition in 1933 seemingly existed for no other purpose than to hopelesslybewild the patrons. In other examples at the French Exposition in 1926 the detail is better done, but there is still no fundamental departure from Beaux Arts design. The Reichsportfeld of 1926 in Berlin was an efficient plan, but with a bad space relationship between areas. It might have been better if there had been no attempt to segregate areas or gain a false dominance by the use of pylons. Aside from these tangential strikes which still continue by designers whose understanding of modernism is superficial, we may divide other work in the field into three categories: 1. negation, 2. fusion, and 3. spatial design.

Fusion: In other works of Wright and some others, the designer has sought to extend the living rooms of the house into the landscape and blend the two so that a division between indoors and out-of-doors becomes imperceptible. The Coonley house and Taliesen accomplish this through a projection of much architectural detail into the garden. The Belgian garden at the French Exposition brought the garden in under the roof whereas the Koch house at Cambridge treats the living room and garden area as one volume separated only by a sheet of glass. This is all to good advantage, but where a fairly intensive use of outdoor areas is demanded we must go even further in their development along the lines of Space Design.

Space Design: The old framework of flat pattern, axial relationships, and bilateral symmetry of stylized form are not enough now. Instead our concept is one of space design, the control of volumes. Mies Van der Rohe's German building at the Barcelona Exposition is a good example of the three dimensional design. In it you may find axes if you like, but they do not mean much compared to the relationship between the figure and space around. Born's sketch for a modern apartment is not so much a room and terrace as it is a useful subdivision of one large volume—each is separate and yet a part of the other, one could not exist alone.

In landscape design we are no longer trying to create stage scenery which provides pretty pictures from limited viewpoints but usable areas whose boundaries we feel in all dimensions—and the design will not extend beyond the useful areas—there will be no garden as such; our forms will be roads, forecourts, terraces, playgrounds, cutting gardens, views, etc.

Do These Principles Preclude the Axis? My answer to that is that the most occult designer would scarcely recommend half a moustache to anyone. The straight line remains the shortest distance and quite often the logical result where many areas must be related. But, rather, our designs will be constructed of infinite minor axes, none of them very dominant. Domination will come from the accent of certain focal points within the volume, thus providing infinite compositions for the moving viewpoint, since man is a moving viewer, and allowing the viewer to be a part of the design and not a distant admirer. It is never possible to formulate rules for design, but I would set down the following as guides:

1. Design nothing to be viewed from a single viewpoint unless that is the only point from which the object may be seen—never gain false dominance by use of the axis.
2. Design the areas as though they are volumes of space extending upwards as well as on the flat.
3. Design the volumes to include the observer—a dynamic and not static viewpoint.

(Continued on Cover III)
EDITORIAL COMMENT

WHAT IS A PROFESSION?

One of the impediments which has stood in the way of the fullest and most effective functioning of the American Institute of Architects as the representative organization of architects, has been its standard or ideal of professional practice, tacit if not stated.

No honorable practitioner can object to the ethical ideals of the Institute, which have in the main been as well lived up to as those of other professions. We can, however, question the implied requirement that the Institute member be engaged in strictly private practice, if not as a principal, at least potentially, with his name in small type on somebody else's door or letterhead.

If we could all serve our clients directly and personally on a fee basis, that would be ideal, and there will always be a certain percentage who can maintain that relationship. In this decade the percentage is very low and is going down, but the need for professional ideals and for a really representative organization to foster them, is greater than ever.

The young civil engineer, looking forward to a career, has less than one chance in ten of being a private practitioner or consulting engineer, but this does not prevent him from regarding himself as a professional man. The fact that he will most probably work for a salary for a government bureau or a corporation does not deter him from joining the A.S.C.E. and subscribing to its ideals. Most likely he becomes a member of his student chapter. This should be the customary approach of the young architect to the A.I.A. instead of looking on from the outside for ten years or more, with mingled awe and misunderstanding.

Dr. Wickenden, engineering educator, in the article in this issue, analyses very carefully the real bases of professional conduct. We suggest that architect-readers mentally substitute the word "architect" every time the word "engineer" appears in the article. This will emphasize the fact that a conscientious architect, no matter where or how he plys his craft, can be professional.

CATCH 'EM YOUNG

Professor Boas' prize-winning essay condensed in the February issue deals with the place of Fine Arts in general education at college level. This suggests to us that a long-range program of educating the public to appreciate architecture and to understand our professional function might well be focused in schools and colleges.

The Nazis have followed with astounding results the Biblical admonition: "Train up a child the way he should go; and when he is old he will not depart from it."

The application of this to our problem means that all professional societies should advocate, support and participate in public school education in architecture for all students, not merely for vocational guidance. Committees on Education and qualified individuals should assist in the preparation of pamphlets and textbooks, and by giving illustrated lectures.

Schools of architecture which are in universities should offer and promote courses in History and Appreciation of Architecture, taught by architects, for Liberal Arts and other non-professional students, with special effort in the direction of the Teachers College.

(Continued from page 37)
THE SECOND MILE*
Dr. William E. Wickenden, President
Case School of Applied Science, Cleveland

WHOSOEVER shall compel thee to go one mile—go with him twain." I am not sure that I should dare to choose this counsel of perfection from the Sermon on the Mount as a text for a talk to engineers. Every calling has its mile of compulsion, its daily round of tasks and duties, its standard of honest craftsman ship, its code of man-to-man relations, which one must cover if he is to survive. Beyond that lies the mile of voluntary effort, where men strive for excellence, give unrequited service to the common good, and seek to invest their work with a wide and enduring significance. It is only in this second mile that a calling may attain to the dignity and the distinction of a profession.

There is a school of thought that seems to hold that all of the problems of the engineering profession may be solved by giving it a legal status. If only we compel all who would bear the name of engineer to go the mile of examination and licensure, we shall have protection, prestige and emoluments to our heart’s desire. They forget, perhaps, that there are many useful callings which have traversed this mile without finding the higher professional dignities at its end. We license embalmers, chiropodists, barbers and cosmetologists, but we do it for the protection of the public, and not to erect them into casts of special dignity and privilege.

There is an illusion that any calling may win recognition as a profession by the mere willing it so and by serving notice to that effect on the rest of the world. It helps a lot, too, if you can invent an esoteric-sounding name derived from the Greek. One reads, for example, of a group of barbers who elect to be known as "chirotonors" in order to raise the prestige of their "profession."

A prominent English churchman once remarked facetiously that there were three sorts of Anglicans—the low and lazy, the broad and hazy, and the high and crazy. It seems to be much the same among engineers in our thinking about our profession. We have a low church party which holds that status and titles are of little consequence; so long as the public allows us to claim them not much else matters if the engineer does an honest day’s work. The broad church party is all for inclusiveness; if business men and industrialists wish to call themselves engineers, let us take them in and do them good, not forgetting the more expensive grades of membership. The high church party is all out for exclusive definitions and a strictly regulated legal status; in their eyes, what makes a man a "professional" engineer is not his learning, his skill, his ideals, his public leadership—it is his license certificate.

In view of these divided counsels, it may not be amiss to consider briefly what a profession is.

If one seeks definitions from various authorities, he finds three characteristic viewpoints. One authority will hold that it is all an attitude of mind, that any man in any honorable calling can make his work professional through an altruistic motive. A second may hold that what matters is a certain kind of work, the individual practice of some science or art on an elevated intellectual plane which has come to be regarded conventionally as professional. A third may say that it is a special order in society, a group of persons set apart and specially charged with a distinctive social function involving a confidential relation between an agent and a client. Some define a profession solely in terms of ideals possessed, others solely in terms of practices observed, and still others in terms of police powers exercised. Some of the distinguishing attributes of a profession pertain to individuals, while others pertain to groups, but there is considerable variation in the emphasis given.

What marks off the life of an individual as professional? First, I think we may say that it is a type of activity which is marked by high individual responsibility and which deals with problems on a distinctly intellectual plane. Second, we may say that it is a motive of service, as distinct from profit. Third, is the motive of self-expression, which implies a joy and pride in one’s work and a self-imposed standard of workmanship—one’s best. And fourth, is a conscious recognition of social duty to be accomplished, among other means, by guarding the standards and ideals of one’s profession and advancing it in public understanding and esteem, by sharing advances in professional knowledge and by rendering gratuitous public service, in addition to that for ordinary compensation, as a return to society for special advantages of education and status.

Next, what are the attributes of a group of persons which mark off their corporate life as professional? I think we may place first a body of knowledge (science) and of art (skill), held as a common possession and to be extended by united effort. Next we may place an educational process of distinctive aims and standards, in ordering which the professional group has a recognized responsibility. Third in order is a standard of qualifications, based on character, training and competency, for admission to the professional group. Next follows a standard of conduct based on courtesy, honor and ethics, to guide the practitioner in his relations with clients, colleagues.
and the public. Fifth, I should place a more or less formal recognition of status by one's colleagues or by the state, as a basis of good standing. And finally an organization of the professional group based on common interest and social duty, rather than economic monopoly.

The traditional professions of law, medicine, and divinity had a common fountain head in the priest-craft of antiquity. What is professional in engineering and in certain other modern callings can be traced back only so far as the medieval merchant and craft guilds. These arose in the period when feudal society was breaking down and the beginnings of the modern commercial and industrial era were appearing. In this period of disintegration and remaking of the social order, police powers had not been largely developed or protective services created by the state. In the various crafts it was the guilds which regulated by ordinance the hours of labor, the observance of holidays, the length and character of apprenticeship and the quality of workmanship; and tested the progress of novices, apprentices and journeymen and finally admitted them to the ranks of the masters.

Many of these features are perpetuated in the modern professional body. The public grants it more or less tangible monopolies and self-governing privileges, in consideration of which it engages to admit to its ranks only men who have proved their competency, to scrutinize the quality of their work, to insists on the observance of ethical relations, and to protect the public against extortion and bungling. The public wisely puts the burden of guaranteeing at least minimum standards of competency on the profession itself. It may implement this obligation through public examinations and licensure—a profession must guarantee to the public the competency of its practitioners. In return, the public protects the profession from the incompetent judgment of the layman by a privileged status before the law.

Professional status is therefore an implied contract to serve society, over and beyond all duty to client or employer, in consideration of the privileges and protection society extends to the profession. The possession and practice of a high order of skill do not in themselves make an individual a professional man. Technical training pure and simple is vocational rather than professional. The difference between the two is a matter of spirit and ideals and partly an educational overplus beyond the minimum required to master the daily job. This overplus is partly a matter of knowledge of social forces and institutions which enables the professional man to view his work and its consequences not only as a service to a client, but also in terms of its implications for society.

Through all professional relations there runs a three-fold thread of accountability—to clients, to colleagues, and to the public.

If we were to narrow our professional fellowship so as to include only men who render technical service on an individual agent-and-client basis and exclude all whose work is primarily administrative, I feel that we should do an irreparable injury both to ourselves and to society. The engineer has been the pioneer in the professionalizing of industry, and his task is only begun. Organized labor, it seems, is intent upon gaining a larger voice in the councils of industry; it wants to sit in when policies are made and to share in planning the schedules of production. If any such day is ahead, the middle-man of management who can reconcile the stake of the investor, the worker, the customer and the public is going to be the key man on the team. For that responsibility, the finger of destiny points to the engineer. This makes it all the more urgent that the young engineer, while seeking in every way to gain a discriminating and not unsympathetic knowledge of the labor movement, should avoid being sucked into it by the lure of a quick gain in income and in bargaining power.

The ethical obligations of a profession are usually embodied in codes and enforced by police powers. The obligations of a profession are so largely matters of attitude that codes alone do not suffice to sustain them. Equal importance attaches to the state of mind known as professional spirit which results from common adherence to an ideal which puts service above gain, excellence above quantity, self-expression above pecuniary incentives and loyalty above individual advantage. No professional man can evade the duty to contribute to the advancement of his group. His knowledge, however, is to be regarded as part of a common fund built up over the generations, an inheritance which he freely shares and to which he is obligated to add; hence the duty to publish the results of research and to share the advances in professional practice. If the individual lacks the ability to make such contributions personally, the least he can do to pay his debt is to join with others in creating common agencies to increase, disseminate and preserve professional knowledge.

There are too many engineers with a narrow and petty attitude on these matters: mature men who complain that the immediate, bread-and-butter value of the researches and publications of a professional society are not worth the membership fee, and young men who complain because it does not serve them as an agency of collective bargaining. Shame on us! Do we look with envy on the high prestige of medicine and surgery? Then let us not forget that this prestige has been won not merely through personal skill and service, but through magnificent contributions to human knowledge without profit to the seekers and with inestimable benefits for all mankind. Do we covet public leadership on a par with the legal profession? Then we do well to remember that the overplus which
differentiates a profession from a technical vocation calls for personal development and for powers of expression sufficient to fit a man for a place of influence in his community.

Measured by the standards I have been seeking to outline, many men who call themselves engineers and who are competent in accepted technical practices can scarcely be said to have attained a real professional stature. These are the men who have let their scientific training slip away, who do not see beyond the immediate results of their work, who look on their jobs as an ordinary business relationship, who contribute nothing to advancement by individual or group effort and who have little or no influence in society. They have been unable to surmount routine in the early stages of experience and have gradually grown content with mediocrity. There is much in the daily work of a physician, a lawyer and a minister of religion which compels him to be a life-long student. In peace times the army officer is likely to spend one year in six going to school. The student habit is less often a mark of the engineer. Far too many seem to leave all growth after their college days to the assimilation of ordinary experience, without deliberate intellectual discipline of any kind.

There is a certain school of thought which has two quick and ready remedies for all ills and shortcomings of the profession. One is to keep the boys longer in college; the second is to compel every engineer to take out a public license. One need not quarrel with either the aims or the means; so far as they go both are good, but they cover only the first mile. Registration will go far toward keeping the wrong man out, but will serve only indirectly to get the right men in. Beyond it lies a second mile of growth and advancement for which effective stimuli, incentives and rewards can be provided only within the profession itself.

The proposal to compel all engineering students to remain six years or more in college and to take both the arts and the engineering degrees is a counsel of perfection, attractive in theory and unworkable in practice. Growth in voluntary postgraduate enrollments has been going forward at a truly surprising pace. Equally encouraging are the gains in liberalizing the engineering curriculum. My enthusiasm is stirred by the rapid gain in cultural interest and activity among engineering students.

You are fighting a technological war, and we are entering upon an all-out program of technological defense in which every man under arms must be backed by more than a dozen in industry and in which only one man in four under arms is expected to carry a rifle. This experience is likely to have a profound effect on education. We are likely to see technological education, both at the secondary and the higher levels, becoming more and more the dominant type.

The climax of man's effort to subdue nature, shift labor from muscles to machines, to make material abundance available for all, and to abolish poverty and disease, may well fall in the next fifty years. After that human interest may shift from work to leisure, from industry to art. Meanwhile engineers will multiply, research will expand, and industry will grow more scientific. Engineers will find their way into every field where science needs to be practically applied, cost counted, returns predicted and work organized systematically. In few of these new fields, if any, will engineers be self-sufficient; to be useful they must be team-workers; and they must be prepared to deal with "men and their ways," no less than "things and their forces."

The engineering profession will exercise a far greater influence in civic and national affairs. It will probably never be able to define its boundaries precisely, nor become exclusively a legal caste, nor fix a uniform code of educational qualifications. Its leaders will receive higher rewards and wider acclaim. The rank and file will probably multiply more rapidly than the elite, and rise in the economic scale to only a moderate degree.

Engineering education must break away from its present conventional uniformity.

The engineer's job will be so varied, and will change so fast, and his tools will so increase in variety and refinement with the advance of science, that no engineer can hope to get a once-and-for-all education in advance. We must expect to re-educate engineers at intervals throughout their careers. In the future we shall see large numbers of young engineers coming back to college. We should cease to think of education as a juvenile episode. Once these means of adult education are provided in ample degree, the engineering colleges could broaden the scientific and humanistic bases of their curricula, cut down on early specialization, relieve overcrowding, inspire independent work, and show the world the best balanced and best integrated of all modern disciplines.

We have no quarrel with liberal education, nor with the doctrine that it is best for many young people to lay first a foundation of culture and then to erect upon it a superstructure of competency. But we hold that there are even more young people who will do better to lay first a foundation of competency and to build upon it a superstructure of culture and of social understanding. That is precisely what the enlightened engineering school of today is undertaking to do.

"The February issue is a wow! If you didn't get a copy, you are unfortunate indeed—enlightening articles, snappy photographs, outstanding cover, and on time." The Anthemios Anthem—"Thanks"—Ed.
THE WAR AND EDUCATION

Memorandum
February 9, 1942

Re: Deferment of Students in Schools of Architecture

To: Dr. Francis J. Brown, Secretary Committee on Military Affairs, American Council on Education, Washington, D.C.

Mr. Emmett H. Welsh, Chief, Occupational Outlook Division, Bureau of Labor Statistics, Washington, D.C.

Mr. James V. O'Brien, Chairman, National Roster of Scientific and Specialized Personnel, Washington, D.C.

Major Baker, National Headquarters Selective Service System, Washington, D.C.

On February 7, 1942 Dean Leopold Arnaud of the School of Architecture of Columbia University, and myself had the privilege of calling on you as a Special Committee representing thirty-three architectural schools which are members of the Association of Collegiate Schools of Architecture.

This memorandum is intended to summarize the arguments then presented in support of granting to architectural students the same status under the Selective Service Act as is now authorized for other professional and scientific students, such as Engineers, Physicists and Chemists.

We urge that Architecture should be listed among the categories in which students in good standing, when officially recommended by the institution in which they are enrolled, are especially entitled to consideration by Local Draft Boards for deferment until they have completed their course. The basic reasoning behind this request is that such men will be more useful to their country after they have finished their training.

Our case may be summarized as follows:

1. The services which architectural graduates are trained to perform are important to the national interest in time of war. (See Exhibit "A")
2. There is an actual and potential scarcity of architecturally trained young men. (See Exhibit "B")
3. This shortage has not been recognized because (See Exhibit "C")
 (a) Most young architectural graduates are being employed by Government Agencies who rate them as Engineers.
 (b) The establishment of priorities and restrictions on private building has greatly curtailed the demand for Junior employees in the offices of practicing architects.
4. One State Headquarters of the Selective Service System has already recognized this condition in its area, and recommended deferment for third, fourth and fifth year architectural students. (See Exhibit "D")
5. Unless "Architects" are officially included in the list of occupations approved by National Headquarters, professional architectural training will stop with the end of the current academic year. (See Exhibit "E")

Respectfully,

SHERLEY W. MORGAN, Chairman
Special Committee on Selective Service
Association of Collegiate Schools of Architecture

Memorandum re: Deferment Architectural Students
Submitted by: Special Committee, Association of Collegiate Schools of Architecture

Date: February 9, 1942

Services

Exhibit "A"

Architectural students are trained to undertake the type of Planning whose importance has been intensified by the War, including naval and air bases, army cantonments, factories for munitions, housing for workers, air raid protection for communities, civil and military camouflage, etc., etc. In solving such problems the architect's essential role is the coordination of the work of specialists, so as to maintain a proper balance between the parts of the whole operation. He must work in collaboration with Engineers and other technologists, but he is just as essential to them as they are to him.

From the point of view of initial employment, the difference between "Architects," "Architectural Engineers" and "Structural Engineers" is often superficial in that the training for all three types has many elements in common. The better students go easily from the more general Planning problems of architecture to the more specialized and technical problems of structural execution. It is not so easy, however, for the engineering student whose training has been concentrated on how to do things, to undertake the more general approach required in the decision of what to do.

For example, a college graduate of 1942 whose A.B. degree included only the first two years of architectural training, took and passed the examination for Junior Engineer, and is employed in the construction of one of the Off-shore Bases. He reports that his work is largely architectural, rather than engineering, in the sense that he is concerned with Planning problems involving decisions as to what to do, rather than with technical problems of execution.

Scarcity

Exhibit "B"

The number of potential architects is small in comparison to the essential contribution which they can make to the enormous construction program which is involved in our War effort, and will be intensified in Post-War reconstruction. They are a highly selected group with special attainments, rigorously selected for
special aptitude and competence on matriculation, and subject to a severe process of elimination during the training period. A mortality of fifty per cent is not unusual between entrance and graduation.

It has been publicly estimated that the volume of building construction involved in the War program already approved, will total $11,000,000,000 for 1942. In the execution of this responsibility the public agencies concerned will require a very large number of technically trained young men.

There is a recognized shortage of civil and structural engineers which architectural graduates can help to fill, since they can meet at least six of the fields listed by the National Roster of Scientific and Specialized Personnel for Civil Engineers (except for experience).

The total number of graduates from the thirty-three Architectural Schools in our Association averaged less than 500 individuals per year, for the period from 1937-1941. Our enrollment has naturally followed, with a short time lag, the cycle of the building program of the country. Thus, in 1929 there were 4786 students registered in thirty member Schools. This dropped to 2723 in 1934-35, and gradually recovered to average about 3200 for the last five years. The exact figure for 1941-42 is not available but will probably be about 3500. Including nonmember schools, the average total number of graduates during the depression years has been about 600. This number is less than is required to maintain the profession at normal strength (assuming a reasonable recovery from the depression in the building industry), and is very much below what is needed to take care of a sudden boom, such as that which the War has now caused.

Reasons

At their Convention in Chicago in May 1941, the Association of Collegiate Schools of Architecture went on record in a memorandum addressed to Selective Service Headquarters that "there was a shortage of trained technicians in the field of construction," and stated their belief that "this shortage would become serious if architectural students were not allowed to continue their studies." Although this opinion seems to be at variance with that of the architectural profession, as brought out by the questionnaire sponsored by the American Institute of Architects last summer, the reasons for the apparent contradiction are two. First, the demand for graduates which the Schools cannot fill is coming from Government Bureaus, Military services, and War industries, rather than from private practitioners. Second, the graduates so employed are rated as some type of Engineers, rather than as Architects or Architectural Draftsmen.

Neither of these facts was considered in the Report on "Building Architects and Architectural Draftsmen as Related to the Selective Service Program" prepared by the Bureau of Labor Statistics for National Headquarters, Selective Service System in July 1941, nor were the Schools consulted in its preparation. However, some Local Boards are recognizing the importance of continuing the supply of architecturally trained men, and are granting deferment. Twenty universities are officially recommending architectural students for deferment, along with Physicists, Chemists and Engineers.

Government Agencies are being called on today to solve architectural problems, and yet many are authorized to employ only "Engineers." This results, in many cases, in architectural graduates being employed to do architectural work under the title of "Engineer," and without establishing that there is a demand for Architects. Typical examples of how this situation is affecting the graduates of Architectural Schools follow.

1. One School reports that 15 out of 16 of its 1941 graduates are now employed under the title of Engineering Draftsmen, and only 1 has a job which is definitely called Architecture. Another reports the same number of graduates, with 2 of these holding technical commissions in the Navy, 1 in the Air Corps, 2 employed at the Panama Canal, 2 in Government Planning Agencies, and only 9 in civilian architects' offices. Both Schools had additional requests for graduates which they could not meet, including a call from the Army for construction work in Puerto Rico.

2. Another School states that "there is a shortage of younger men—of architectural draftsmen. Our School receives many requests each week for graduates to work on government projects all over the Middle West—defense industries, air fields, army posts, and hospitals—jobs which we are unable to fill."

3. The Bureau of Yards and Docks of the Navy Department was recently asked whether architectural graduates could obtain reserve commissions in the Civil Engineering Corps of the Navy. The Bureau replied that "we are giving consideration to Architectural Engineers who have actually practiced engineering subsequent to graduation, but unless we have a very special billet in which an Architect would fit, we are not giving consideration to architects."

On the same day an architectural graduate, a civilian employee of that same Bureau, telephones from Washington asking for 3 to 5 additional architects for its civil staff. They will probably be rated as Engineers, but are assigned primarily to the architectural work that the Bureau has to handle.

State Action

The State Headquarters for Selective Service in Minnesota issued its Bulletin #135-41 on December 5, 1941, directing deferment of students in the fourth and fifth years of the architectural program at the University of Minnesota, and of its graduates in architecture who are employing their architectural training in critical occupations which are of national importance. This report stresses the increasing shortage of trained personnel which is anticipated in the field of architect-
ture. It points out that there has been a steady decline in architectural graduates since 1930, and that they are variously employed as Construction and Engineering Draftsmen, Inspectors, Designers and Superintendents of Construction in defense projects, and at Army and Navy Bases. In the industries they are included as Supervisors, Industrial Designers, Architectural Draftsmen, Production Men, and in rare cases, Tool Designers.

It concludes that the anticipated and existing shortage in its region warrants deferment, especially of the younger men who are immediately needed in the War effort. This Bulletin has since been extended to include third year students.

Specific Mention of Architects Exhibit “E”

Bulletins from National Headquarters with respect to occupations in which shortages of manpower exist were not intended to be exclusive lists, and the Local Boards were presumed to exercise discretion with regard to occupations not listed. However, there have been few changes in cases of architectural students for the primary reason that Architecture was not so listed. The Bulletins have, in practice, become “exclusive” lists.

This situation can only be remedied by including the title Architect among the classes of students recommended for deferment. It might be possible to accomplish the same result by considering architectural graduates as a special type of Engineers (the National Roster already testifies to a shortage of “Architectural Engineers”). This would meet the immediate situation, but have the serious objection of future complications with the Registration laws which control the practice of architecture in our States. These have established procedures for licensing Engineers and Architects, but do not recognize intermediate titles.

The Syllabus of examination requirements issued by the National Council of Architectural Registration Boards dictates the basic training required for architects. The amount of “engineering” included in the preparation for such examinations shows clearly why approved architectural graduates can serve in structural fields commonly thought to require “Engineers.” Two entire days out of four are devoted to the Subjects Structural Design, Truss Design, Selection and Use of Materials of Construction, Mechanical Equipment (plumbing, heating, lighting, etc.), Counselling and Administration, and Supervision of Construction. (A copy of this Syllabus is attached.)

The educational programs of the Schools which are members of the Association require at least five years following High School. Our graduates are thus between 21 and 25 years of age, and must be called in the draft. Since the majority of them cannot get deferment from their State Boards, those physically qualified are volunteering for various openings for commissions as Junior officers in the Navy, or other services.

By June 1942 most Schools will be denuded of all except their first and second year students, and a definite gap will be created in the supply of architectural graduates. This will continue for the duration of the War, and will be of serious consequence for Post-War reconstruction, as well as cutting off a supply of young men who are immediately needed in the War effort.

Memorandum #2

1. The Architectural Schools are only seeking to serve their country in the way in which they believe they can be of the most service. Many are already offering accelerated programs, and all will include more Engineering courses if the National Government will tell us what is desired, to make the training that we provide more immediately useful in the War effort.

2. National Headquarters of the Selective Service System has already established the fact that there exists today a shortage of manpower for Engineering services, including Structural and Civil Engineers. The National Roster of Scientific and Specialized Personnel recognizes a further shortage of Architectural Engineers. The latter classification is not generally accepted by the State Registration Boards or by the Architectural Schools as a title or degree. All architectural graduates have, however, sufficient training in structural subjects for a considerable part of the work now being done for the Government under the above classifications.

3. The Architectural Schools are thus a source of helping to relieve the recognized shortage of manpower in the structural field. The attached survey shows that they will be practically eliminated as a source of supply, unless their students are recognized for deferment on the same basis as Engineers, Physicists, Chemists, etc. It may be tabulated as follows:

<table>
<thead>
<tr>
<th>33 Member Schools</th>
<th>21 Non-Member Schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrollment</td>
<td>Graduates</td>
</tr>
<tr>
<td>5 year average</td>
<td></td>
</tr>
<tr>
<td>1935-1940</td>
<td>3146</td>
</tr>
<tr>
<td>1940-1941</td>
<td>3271</td>
</tr>
<tr>
<td>September 1941</td>
<td>3000 (ca)</td>
</tr>
<tr>
<td>February 15, 1942</td>
<td>2555</td>
</tr>
<tr>
<td>September 1942</td>
<td>336</td>
</tr>
<tr>
<td>(estimated)</td>
<td>979</td>
</tr>
<tr>
<td>Now deferred</td>
<td>125</td>
</tr>
<tr>
<td>September 1942</td>
<td>88</td>
</tr>
<tr>
<td>without deferment</td>
<td>517</td>
</tr>
</tbody>
</table>

It is obvious from the above figures that the Schools cannot continue as going concerns, turning out technically trained young men, unless our approved students
are deferred. Thirty-one of our member schools have expressed their approval of the memorandum sent you on February 9, 1942.

4. If deferment of approved architectural students is authorized, we suggest that channels should be explored for assuring that the services of these men shall be made available to the Nation immediately after their graduation.

Respectfully,
SHERLEY W. MORGAN, Chairman
Special Committee on Selective Service
Association of Collegiate Schools of Architecture

To ALL ARCHITECTURAL SCHOOLS:

Your attention is invited to Circular 54-1-281 dated November 1, 1941, issued by the National Headquarters of the Selective Service System. This states the occupations in which shortages of man-power are known to exist. It may be consulted at the office of any Local Draft Board.

Among the occupations listed is that of "Draftsman, Construction." It would appear that at least the more advanced students in good standing in any adequate school of Architecture should be able to qualify under this category.

Such individuals are justified in asking for this status under the Selective Service Act, and the institutions in which they are enrolled are justified in recommending their deferment. Decision in each case is made by the Local Board, subject to appeal to higher authority under the established regulations.

Sincerely yours,
SHERLEY W. MORGAN, Chairman
Special Committee on Selective Service
Association of Collegiate Schools of Architecture

from a letter to R. H. Shreve, President, A.I.A., by
Major Geo. H. Baker, Chief, Manpower Division,
NATIONAL HEADQUARTERS
SELECTIVE SERVICE SYSTEM

"... The Selective Service Regulations are broad enough to allow the local boards to classify in Class II-A any man who is found to be necessary in an activity supporting the war effort. These activities include those which provide food, clothing, shelter, health, safety, and other requisites of our daily life. In order that an activity may be considered essential to the support of the war effort, its facilities must be predominantly devoted to that purpose. We are of the opinion, therefore, that architects whose efforts are so directed may be considered for occupational deferment where they cannot be replaced and where their removal would adversely affect the work in which they are engaged."

We are the music makers,
And we are the dreamers of dreams,
Wandering by lone sea-breakers,
And sitting by desolate streams;
World-losers and world forsakers
On whom the pale moon gleams;
Yet we are the movers and shakers
Of the world forever, it seems.

With wonderful heartless ditties
We build up the world's great cities
And out of a fabulous story
We fashion an empire's glory
One man with a dream, at pleasure
Shall go forth and conquer a crown;
And three with a new song's measure
Can trample an empire down.

We, in the ages lying
In the buried past of the earth,
Built Nineveh with our sighing
And Babel itself with our mirth;
And overthrew them with prophesying
To the old of the new World's worth;
For each age is a dream that is dying,
Or one that is coming to birth.

ARTHUR WILLIAM EDGAR O'SHAUGHNESSY—1874

Our lessons in professional practice today, boys and girls, are found in Volumes II and XX. In case your profs haven't told you often enough, this is Brother Vitruvius' specification for an architect:* The architect should be equipped with knowledge of many branches of study and varied kinds of learning, for it is by his judgment that all work done by the other arts is put to test. This knowledge is the child of practice and theory. Practice is the continuous and regular exercise of employment where manual work is done with any necessary material according to the design of a drawing. Theory, on the other hand, is the ability to demonstrate and explain the productions of dexterity on the principles of proportion.

It follows therefore, that architects who have aimed at acquiring manual skill without scholarship have never been able to reach a position of authority to correspond to their pains, while those who relied only upon theories and scholarship were obviously hunting the shadow, not the substance. But those who have a thorough knowledge of both, like men armed at all points, have the sooner attained their object and carried authority with them.

... He ought, therefore, to be both naturally gifted

* Reprinted by permission of the President and Fellows of Harvard College.

Forty-eight

THE ARCHI
and amenable to instruction. Neither natural ability without instruction nor instruction without natural ability can make the perfect artist. Let him be educated, skilful with the pencil, instructed in geometry, know much history, have followed the philosophers with attention, understand music, have some knowledge of medicine, know the opinions of the jurists, and be acquainted with astronomy and the theory of the heavens.

The reasons for all this are as follows. An architect ought to be an educated man so as to leave a more lasting remembrance in his treatises. Secondly, he must have a knowledge of drawing so that he can readily make sketches to show the appearance of the work which he proposes. Geometry, also, is of much assistance in architecture, and in particular it teaches us the use of the rule and compasses, by which especially we acquire readiness in making plans for buildings. . . . It is true that it is by arithmetic that the total cost of buildings is calculated and measurements are computed, but difficult questions involving symmetry are solved by means of geometrical theories and methods.

A wide knowledge of history is requisite because, among the ornamental parts of an architect's design for a work, there are many the underlying idea of whose employment he should be able to explain to inquirers. . . .

As for philosophy, it makes an architect high-minded and not self-amusing, but rather renders him courteous, just, and honest without avariciousness. This is very important, for no work can be rightly done without honesty and incorruptibility. Let him not be grasping nor have his mind preoccupied with the idea of receiving perquisites, but let him with dignity keep up his position by cherishing a good reputation. These are among the precepts of philosophy. Furthermore philosophy treats of physics where a more careful knowledge is required because the problems which come under this head are numerous and of very different kinds: as, for example, in the case of the conducting of water. For at points of intake and at curves, and at places where it is raised to a level, currents of air naturally form in one way or another; and nobody who has not learned the fundamental principles of physics from philosophy will be able to provide against the damage which they do . . .

Music, also, the architect ought to understand so that he may have knowledge of the canonical and mathematical theory, and besides be able to tune ballistae, catapultae, and scorpiones to the proper key . . .

The architect should also have a knowledge of the study of medicine on account of the questions of climates, air, the healthiness and unhealthiness of sites, and the use of different waters. For without these considerations, the healthiness of a dwelling cannot be assured. And as for principles of law, he should know those which are necessary in the case of buildings having party walls, with regard to water dripping from the eaves, and also the laws about drains, windows, and water supply. And other things of this sort should be known to architects, so that, before they begin upon buildings, they may be careful not to leave disputed points for the householders to settle after the works are finished, and so that in drawing up contracts the interests of both employer and contractor may be wisely safeguarded. For if a contract is skilfully drawn, each may obtain a release from the other without disadvantage. From astronomy we find the east, west, south, and north, as well as the theory of the heavens, the equinox, solstice, and courses of the stars. If one has no knowledge of these matters, he will not be able to have any comprehension of the theory of sundials.

Consequently, since this study is so vast in extent, embellished and enriched as it is with many different kinds of learning, I think that men have no right to profess themselves architects hastily, without having climbed from boyhood the steps of these studies and thus, nursed by the knowledge of many arts and sciences, having reached the heights of the whole ground of architecture.

But perhaps to the inexperienced it will seem a marvel that human nature can comprehend such a great number of studies and keep them in the memory. Still, the observation that all studies have a common bond of union and intercourse with one another, will lead to the belief that this can easily be realized. For a liberal education forms, as it were, a single body made up of these members. . . .

For an architect ought not to be and cannot be such a philologian as was Aristarchus, although not illiterate; nor a musician like Aristoxenus, though not absolutely ignorant of music; nor a painter like Apelles, though not unskilful in drawing; not a sculptor such as was Myron or Polyclitus, though not unacquainted with the plastic art; nor again a physician like Hippocrates, though not ignorant of medicine; nor in the other sciences need he excel in each, though he should not be unskilful in them

. . . if among artists working each in a single field not all, but only a few in an entire generation acquire fame, and that with difficulty how can an architect, who has to be skilful in many arts, accomplish not merely the feat—in itself a great marvel—of being deficient in none of them, but also that of surpassing all those artists who have devoted themselves with unremitting industry to single fields? . . .

. . . the arts are each composed of two things, the actual work and the theory of it. One of these, the doing of the work, is proper to men trained in the individual subject, while the other, the theory, is common to all scholars . . .
... But the actual undertaking of works which are brought to perfection by the hand and its manipulation is the function of those who have been specially trained to deal with a single art. It appears, therefore, that he has done enough and to spare who in each subject possesses a fairly good knowledge of those parts, with their principles, which are indispensable for architecture, so that if he is required to pass judgement and to express approval in the case of those things or arts, he may not be found wanting.

This might well be the Hippocratic Oath of our profession, and it helps a great deal in redeeming our opinion of Vitruvius, who has been indirectly responsible for vast quantities of stupid architecture, posthumously and no doubt unintentionally.

The New Testament lesson is from none other than our late esteemed Master Architect, Cass Gilbert. In his last public utterance, speaking at a New York Alumni Association Founder's Day dinner, he said, among many other wise and helpful things, “There are three important things in the practice of architecture: the first is to get the job, the second thing is to get the next job, and the third important thing is to get the next job.” We need not remind you that this statement was made by one who was himself a master draftsman and designer, no mere purveyor of other people’s talents, and not of the ambulance-chaser type. At least his ambulance-chasing was on a very high plane and for high stakes.

It is told that to land the West Virginia State Capitol commission he shipped out a carload of mounted and framed renderings and large photographs of executed work. He rented the finest suite in the best hotel, and entertained the committee of the legislature at dinner in this suite in such an opulent manner, surrounded by so many tons of monumentality, that it was a complete push-over.

His valet had instructions to keep a bag packed at all times for any kind of a trip. One morning he got a tip that the New York Life Insurance Company had too much money burning holes in its (their?) pockets, for which the probable remedy was a building; also that Mr. Kingsley, New York Life president, would sail for Europe at noon on a certain ship. The valet was called to bring the bag to the ship, and Brother Gilbert too sailed for Europe. The coincidence of their being on the same ship proved to be very welcome to Mr. Kingsley and before they reached Europe his name was on the dotted line.

Be sure to instruct your valet, today. She will object strenuously, but it’s really quite essential to your success.

"The supreme misfortune is when theory outstrips performance."—LEONARDO DA VINCI

BOOKS

"The world of books is the most remarkable creation of man. Nothing else that he builds ever lasts. Monuments fall, nations perish, civilizations grow old and die out—and after an era of darkness new races build others. But in the world of books are volumes that have seen this happen again and again and yet live on—still young, still as fresh as the day they were written, still telling men's hearts of the hearts of men centuries dead."—CLARENCE DAY.

ON BEING AN ARCHITECT. William Lescaze, G. P. Putnam's Sons—1942.

It is difficult to summarize this book of more than 200 pages which is so full of advice, ideas, and enthusiasm and zeal for the profession of architecture. The book is addressed to three different groups; laymen, students of architecture, and architects. The author’s earnestness, zeal and concern for the welfare of the profession carry us beyond the exaggeration and overemphasis which we might criticize in detail.

In his zeal for modern creative architecture, he does injustice to a whole generation of architects who have done creative architecture, which, because it involved some traditional forms and local materials, is therefore labelled eclectic-traditional.

He rightly attributes public misunderstanding of the architect to applied decoration, cake-icing architecture, but he greatly exaggerates the use of romantic and historic allusion by the conventional architect.

He raises the question as to how much or how accurately the architect can foresee and design for future trends.

"It is conceivable that the forms which testify to a new state of order may be built now, today, according to an architect’s vision, years before economics and politics have reached that desired state of complete order..."

This seems to be one of the basic concepts of a new type of architect, the sociologist-reformer-architect, which we question.

The architect should seek the best and most advanced technical advice in all related fields, and he should try to anticipate trends by flexibility in his design, but can the architect ever be sufficiently expert and wise in matters of economics, sociology, etc., to foresee accurately?

He should of course, try to do so, but does he think he has a mission to reform society by means of the buildings he builds, forcing upon his clients types of buildings they don't want or need now? It is enough of a job to design good buildings for this generation. Drawing upon uncertain future is as questionable as drawing too literally upon the past.

Some of the author's reasoning from history seems...
to be somewhat illogical. For example, he says that the Georgian style blossomed naturally in England but on another page, says that the Georgian in America is imitation architecture. In this he fails to understand that colonial America was culturally part of England. He says that the Louvre is a functional building while in general he condemns all of 19th century and also states that there is no justification for trying to harmonize new additions with existing work. The most conspicuous parts of the Louvre are perfect examples of 19th century revivalism and of harmony between old and new parts. In general the author's statements regarding the study of history and the use of precedent seemed to us to be sound and quite in harmony with present day analytical teaching of History of Architecture.

"The modern architect. He too has studied the styles of the past, but only in order to develop his ability to recognize and to understand the method through which architectural excellence has been achieved, not in order to adapt the forms of a style. It is the spirit he follows—not the dead letter."

"It's that nineteenth century gap which makes it so difficult today to gain acceptance of the architectural approach which has been that of great architecture of the past. Don't jump at the conclusion that because of that gap you can afford to turn your back on everything which was built before 1942. You would be a fool. In the first place you would be much poorer spiritually. In the second place, you would remain ignorant and not learn how architectural excellence has been achieved in the past, and through that knowledge learn how to achieve it in your own time."

Mr. Lescaze is thoroughly alive to the problems and difficulties of the profession and endorses Lorimer Rich's proposal of Partial Services as the solution for the problem of bureau architecture.

However much the author may disagree with the type whom he calls the "conventional" architect, the important thing is that he stoutly maintains and intelligently explains the professional position of the architect. We hope that this book will be read by many to whom it is addressed, especially the laymen.

ACTIVE CHAPTERS

The Archi extends a special welcome and fraternal greetings to Stephen Jen Yao Tang, Anthemios '42, initiated January 31 of this year. His home address is Bubbling Well Road, Shanghai, China. We look forward to meeting this brother soon, in this country, and our wanderlust tells us that when we get to China again, during or after this war, we shall call on him there. Let him be for all of us a symbol of the wider reach of our national and fraternal interests.

Iktinos—Univ. of Michigan

Iktinos is continuing its successful course which was well directed last semester by Brother Richard Gomersoll. We are continuing with our singing and do quite well on the Alpha Rho Chi song now. We have had a few social events which include a coffee hour given for the architecture school. In a few weeks we will be holding our spring formal.

The week-end of March 27 was a busy one for us. We initiated Professor Roger Bailey as well as Lynn Smith, Leslie Kenyon, David Lewis, James Tibbetts, David Anderson, George Pureell and James Blair, Jr. This has increased our active membership to 20. We are now looking forward to the first week-end in May when we are going to have the honor of initiating Mr. Saarinen.

Three of our brothers have left us recently. Brothers Gomersoll and Hassen have graduated and are working in Washington and Detroit respectively. Brother Brooks Lapp has gone to take a defense job with the American Bridge Company.

An extra semester has been added to our school year so that our studying is becoming quite intensive. We manage to remain active in interfraternity sports and are getting lots of fun and exercise in return.

We had an election of officers at the end of the fall term. Our officers are: James Porter, W.A., Robert Gaede, W.A.A., Garfield Laita, W.S. and Walter Laitala, W.E.

Garfield H. Laita, W.S.

Anthemios—Univ. of Illinois

Anthemios is on the ball this semester although six men were lost to the army, navy, and defense work. Brother Heter is now working as a site planner for a defense housing project in Norfolk, Va., and Brother Boone is in the engineering department of Boeing Aircraft in Wichita, Kansas. Brothers Strong and Des Marais are with the Navy and are stationed at the Navy Pier in Chicago. Brother Howe is a second lieutenant in the Army, and Brother Beckwith is now in the Army Air Corps. Brother Wendell has been accepted by the Navy Air Corps and will leave for training at the end of this semester.

We all enjoyed a pleasant afternoon when Brother Ely paid us an unexpected visit on February 26. The house looked like hell but we had a swell time. Give us advance notice next time, will you, "Pop," huh?

Anthemios now has fifteen actives and nine pledges besides several prospective pledges. We are beginning to realize our goal of filling the chapter house before the end of the semester.

This semester's pledge dance was a real hum-dinger. The lounge was decorated as a drafting-room and the walls were covered with drawings, nudes, etcetera.
Really sloopy in a typical drafting room style. The job
of putting on the dance was left completely to the
pledges, and they turned out a fine job.

The news that Eliel Saarinen has accepted A.P.X.'s
invitation to become Master Architect was most gratifying.

Our new officers are James Viger, W.A.; J. Eric
Anderson, W.A.A.; Robert H. Theis, W.E.; Howard
Ohme, W.C.; and Wallace E. Jobusch. Brother Viger
received the glad tidings that he is now on the en-
gineering staff of Curtiss-Wright in their Buffalo
plant in the stress analysis division.

Brother Anderson won the Warren Prize for de-
signing a scientific research center.

Brother Stephen Jen Yao Tang of Bubbling Well
Road, Shanghai, China, was initiated in February,
the first Chinese student initiated into Anthemios. He
is a fine influence in the chapter.

Anthemios goes on and on, and I go on to bed.

WALLACE E. JOBUSCH, W.S.

ALUMNI CHAPTERS

COLUMBUS

Fifty-five alums and actives met to celebrate Founders' Day, on the proper date, at the Builder's Exchange
club rooms. Walter A. Taylor, Dem. '21, Editor of THE ARCHI, came from Syracuse, N.Y. to be the prin-
cipal speaker, but John "Tim" Kennedy, Dem. '21 held
the distance record, having stopped in Columbus en-
route (?) from New Orleans to Chicago, where he is
with the Metropolitan Life Insurance Co. Charles
"Chuck" Sutton, Anth. '21 and Fellow of the American
Academy in Rome, professor of Landscape Archi-
tecture at Ohio State, valiantly and singlehanded, up-
held the honor of Anthemios and also defended his
desertion from the ranks of seemingly invulnerable
bachelors. About fifty dollars was contributed at this
meeting as a nucleus for the APX contribution to the
Joseph N. Bradford Scholarship Fund of the Ohio State Development Fund.

DETROIT

That a goodly number of Detroit alumni still have
time to give a thought of two for APX was evidenced
by the turnout at the dinner preceding the annual
meeting (postponed from last Fall at Ann Arbor) of
Iktinos Building Association, held at the new quarters
of The Engineering Society of Detroit in the Rackham
Memorial Building, on February 18.

Twenty six alumni and six active members from
Ann Arbor attended the dinner and meeting, which was
called to order by President "Morrie" Rogers. Among
the highlights were a comprehensive financial history
of the Chapter, prepared and presented by Fred Har-
ley and Dave Williams from out the written rec-
ords and the memories of the narrators, and serving
to illustrate the fact that war time problems in
Chapter House financing are no worse than other
situations which the Fraternity has met and overcome
in times past.

"OK" Griffith, Henry Ruifrok, and Frank White
were elected to the directorship, succeeding Ed Krieghoff,
Vern Venman and Russ Radford, who have served
long and faithfully.

Everyone being anxious to present new ideas for
renewed activity, together with the usual business and
an interesting side debate on parliamentary procedure
between Clair Ditchy and D. H. Williams, the meeting
stretched out considerably in length, but a 100% affirma-
tive vote was given to the suggestion that another,
purely social, meeting be held soon.

This meeting was held, also at the Rackham Build-
ing, on April 14, with an attendance of 34 Iktinos
Alumni, 3 Anthemios Alumni (Leo Bauer, Wiley
Pruner and Paul Marxen), and 3 actives, forty in all.

As planned, it was merely a get together and good
fellowship evening, the only diversion being a tour
of the building—a new addition to Detroit's Art Center,
and occupied jointly by the Engineering Society and
the University Extension Service. A few of the group
were: Jerry Hammond, Harold and Roy Kieler, Tom
Murphy, Al Luckham, Fred Fugger, George Everson,
Bert Lindblad, Nick Sakellar, Bob Space—and others.

Fred Harley is the new president of the Building
Association. He, assisted by the rest of the Directors,
is planning a series of meetings for the 1942-43 season.

Watch for the notice, and be sure the secretary has
your correct address. Alumni of other chapters than
Iktinos, located in Detroit or vicinity, should send
names and addresses to Julian R. Cowin, 1507 Stroh
Bldg., Detroit, Secy. of Iktinos Association and of
Detroit Alumni Association.

Other officers are Frederick Baessler, Vice President
and Frederick J. Schoettley, Treasurer, Henry Ruifrok
Maurice V. Rogers, Frank White and Orrin K. Griffith,
Directors.

The Detroit Alumni Association, as such, may be
said to be inactive but with activities merged with
these of the Iktinos Building Association.

WASHINGTON

Founders' Day banquet in Washington on the 15
of April was attended by the following: Van Vrankin,
Kansas; Jacobson, Kendall and Pickett from Illinois;
Meade, Tucker, Zeidler and Lient. White of Michi-
gan; Knobla and Extrand from Minnesota; Draper of
Virginia. Others in Washington at the present time
include: Bayliss, Donahy, Vosper, Hartgrooves, Under-
wood, Parker, Mitchell, Palms, Bissell, Thorad, Crane,
and probably others that we do not know about.
ARCHIS IN SERVICE

Lt. Francis W. Benson (Andr.) Marine Detachment, U. S. Naval Air Station, Johnston Island, T.H., was on Midway Island for a year before being sent back to Pearl Harbor, Nov. 18 in time to go through the December 7 attack.

Kenneth A. Smith, Anthemos '35, is back in the Army again. He is First Lieutenant at 8th Refresher Course, Engineer School Cantonment, Fort Belvoir, Virginia. Ken says it is the same course that Carl Gerfen, '31, and Edgar T. Clinton, '28, (Anth.) took several months ago.

Robert Strong, Anth. '43, "Duke's" son, has enlisted in the Navy, now anchored at Co. 18, Section D, Navy Pier, Chicago, Illinois. (The Arch would like to know about any other 2nd generation Archis in service.)

Lieut. H. F. Pfeiffer, Anthemos, and Fellow of the American Academy in Rome, is now Public Works Officer on a new Naval Hospital near New York.

Richard F. King: "Some of my fraternity brothers might be interested to know I haven't been hibernating the past year, but have been soldiering at Fort MacArthur, San Pedro, California, where I am a Captain, Corps of Engineers, my assignment being Post Utilities Officer."

Modernism in Landscape Design

(Continued from page 40)

4. Accent focal points within the volume and not the axis.
5. Shapes need not be odd or irregular, but they must be pleasing and interesting, full of rhythm, harmony, dominance and contrast.
6. The product must speak of logic and seem a natural result of conditions.

Much of the work in our parks illustrates perfectly the misguided hand of romanticists. The designers have attempted to disguise the fact that man might ever have gone before where hundreds visit daily. They have said, "Let us make this thing look as though it just happened of logs and stones so that no one can tell we have defiled it by our presence—man is a shameful invention anyway." They might have said, "We will build this thing of stone, glass, and steel, as lightly as we can so as to intrude upon nature as little as possible, for we respect her, and we will not imitate her but leave this as a proud expression of the fact that man and nature supplement on another."

So WHAT? Is any of this vital? Geneticists tell us that a human child suckled by a wolf may never learn some of the first lessons of human beings for it learns more in the first two years of its life than all the rest together. Consequently, who knows what would happen if children were subjected to a super-environment where the first impressions are ones of logic and truth instead of sham and stage scenery.

FIELDS OF PRACTICE

JOHN R. TANNER writes from his year-old house 4460 Royal Palm Ave., Miami Beach, Fla. that he has been with Kiehnel and Elliot, Architects, most of the time since he left New York in 1936. He reports that building has been at a high level most of that time, although conditions of architectural practice have been consistently bad due to overcrowding of the profession and a very mercenary clientele. With the almost complete cessation of private building, the prospect is not very hopeful.

Frederick C. Boldry, Polyklitos, Registered Architect, Scranton Pa., sends a sheaf of news. Boldry is Director of Operations District No. 1, Work Projects Administration, having jurisdiction over the northeastern part of Pennsylvania. Boldry invites visitors and critics to his two-year-old house, 509 Clark Ave., Clarks Summit, Pa.

He notes that W. Stuart Forsyth, Polyklitos '26 is living in Thornhurst suburb of Pittsburgh, and has recently been registered in Pennsylvania. Also that Elmer Love, Polyklitos '26 continues as professor in architecture at Illinois.

Edward Lerch, Anth. '17, was recently appointed as vice-president of the newly formed Iowa-Illinois Gas and Electric Company, which includes utilities in Fort Dodge, Davenport, Cedar Rapids, Iowa City, and Ottumwa, Iowa and Rock Island and Moline, Illinois. Ed is a life-long resident of Rock Island, Illinois, and a graduate of University of Iowa in Arch. Engr.; and has been in charge of the United Light and Power Co., engineering dept. in Davenport, Iowa, since 1930. He has had wide experience in the construction and engineering field.

In his new position, Ed will assist in the direction of Iowa-Illinois properties. He is married and has two daughters. During the World War I he served 11 months in the U. S. Air Corps. Ed lives at 2112 29th Street, Rock Island, Illinois.

R. E. Bryan of Illinois is now located at Stewart Warner Company, Dixon, Illinois in charge of construction and operation of a New Green River Ordnance Plant. We do not know whether or not his job and location are confidential but he is interested in hiring a few engineers.

Robert E. McClain, Andr. W.G.E, is employed in the Los Angeles office of the U. S. Engineers Dept. On 24 hour call, he has been doing 10 hours a day, seven days a week.

Giland B. Young, Anth. '24, is now a Structural Engineer for the 6th Construction Zone—Quartermaster Corps in Chicago Headquarters. Still lives at 195 Myrtle Ave., Elmhurst, Illinois.

Henry E. Fairchild, Democrates '34, writes from 120 Tunxis Road, West Hartford, Connecticut with news about affairs of the profession in Connecticut, in which he has been active.
THE GRAND COUNCIL
Worthy Grand Architect • • • • • - Dwight Palmer Ely
802 Buckeye Bldg., Columbus, Ohio
Worthy Grand Scribe • • • • • - Robert E. McClain
2912 W. Santa Barbara Ave., Los Angeles, Calif.
Worthy Grand Estimator • • • • • - Clifford H. James
310 E. 14th St., Austin, Tex.
Grand Lecturer • • • • • • - • • Arthur D. Pickett
110 East 42nd St., New York City

ANTHEMIO—Univ. of Illinois—Chapter House, 1108 S. 1st St., Champaign, Ill. Russell Heter, W.A.; Warren Penci, W.A.A.; Daniel Boone, W.E.; Howard Ohme, W.S.; James Bigger, W.C.

DINOCRATES—Univ. of Texas, Austin, Tex.

KLALLERKAE—Univ. of Virginia, University, Va.

MECINES—Univ. of Minnesota—Chapter House, 315 19th Ave. S.E., Minneapolis, Minn.; Anton Dropping, W.A.; Forrest Hoganson, W.E.; and James Hussey, W.S.

PARONTOS—Kansas State College, Manhattan, Kan.

POLYKLE'TOS—Carnegie Inst. of Technology, Pittsburgh, Pa.

THEROI—Ohio State Univ., Columbus, Ohio.

THE UNDERGRADUATE CHAPTERS

THE ALUMNI ASSOCIATIONS

ANTHEMIO, Harford Field, Pres., 323 S. Lincoln St., Hinsdale, Ill.; Donald E. Anderson, Vice-Pres., 1183 W. Main St., Decatur, III.; Case M. Rutledge, Sec., 86 Cactus St., Providence, R.I.; George F. Fritzinger, Sec., 9703 W. Main St., Belleville, Ill.

DEMETRIOS, W. T. Halligan, Pres., 646 Rhoalds Pl., Columbus, Ohio; John Stritmatter, Vice-Pres., 248 E. Beaumont Rd., Columbus, Ohio; Frank E. Wesley, Jr., Sec.-Treas., 128 Kenworth Rd., Columbus, Ohio.

IKTINOS, Fred M. Harley, Pres., 1207 Sth Bldg., Detroit; Frederick Buesker, Vice-Pres., 1791 Burns Ave., Detroit; Julian R. Cowin, Sec., 1507 Stroh Bldg., Detroit; Frederick J. Schoettle, Treas., 13370 Wilshire, Detroit.

MKESINES, Milton Bergstedt, Pres., 452 Beacon Ave., St. Paul, Minn.; Earl Beddow, Sec., 1299 Grand Ave., St. Paul, Minn.; Austin Lane, Treas., 4012 12th Ave S., Minneapolis, Minn.

THE ALUMNI CHAPTERS

Columbus, W. T. Halligan, A.A., 646 Rhoalds Pl., Columbus, Ohio; R. E. Prince, A.S., 7000 Cooper Rd., Westerville, Ohio.

Detroit, Karl H. Kuhn, A.A., 2164 Baldwin Ave., Detroit; Leo I. Perry, A.S., 2225 David Stott Bldg., Detroit, Mich.

Indianapolis, William King, A.A., 404 E. 13th St., Indianapolis, Ind.; Russell Burtie, A.B., 431 Massachusetts Ave., Indianapolis, Ind.

Los Angeles, Lyman W. Bosserman, A.S., 1234 Richard Pl., Glendale, Calif.